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Abstract - Hither-to-fore an unavailable analytical solution (strong form or differential form)
to the boundary-value problem of advanced fiber reinforced anti-symmetric angle-ply laminated
cylindrical panels of rectangular planform subjected to static loadings is presented. A variationally
consistent higher shell theory is utilized that generates five highly coupled fourth order partial
differential equations in five unknowns, three displacements, and two rotations. A boundary con­
tinuous double Fourier series-based solution functions is assumed to solve such equations in
conjunction with the admissible boundary conditions. The numerical results constitute the study of
convergence of displacements, in-plane forces, and moments; and spatial variations of them pre­
sented in the form of contour plotting for various parametric effects. These, hither-to unavailable
solutions, and analytically obtained numerical results should serve as bench-marks for future
comparisons of popular approximate methods (integral form or weak form), such as finite element,
boundary element, finite difference, Galerkin approach, Rayleigh-Ritz, collocation, least-squares
methods, and experimental results. etc. 1998 Elsevier Science Ltd. All rights reserved.

INTRODUCTlON

The shell theory is a transition from the three-dimensional structural behavior to the two­
dimensional domain characteristics. This theory is employed with an assumption that the
through-thickness variation is not a dominating factor in comparison to the spatial vari­
ations and their magnitudes. The outcome was the development of the thin shell theory,
the first of its kind, as established by Love and Kirchhoff (Ambartsumyan, 1953; Donnell,
1933; Flugge, 1960; Greenberg and Stavsky, 1980; Seide, 1975; McElman, 1971; Jones
and Morgan, 1975; Soldatos and Tzivanididis, 1982; Soldatos, 1984) a century ago, Later,
the industry has realized that if the thickness of the shell increases, structural responses are
not in a good agreement with the reality in general, and particularly along the thickness
direction. A theory known as the Reissner and Mindlin shear deformation theory (RMSDT)
(Bert and Reddy, 1982; Bert and Kumar 1982; Stavsky and Lowey, 1971 ; Reissner, 1944;
Mindlin, 1951 ; Chaudhuri, 1989; Librescu et al., 1989; Kabir and Chaudhuri, 1994) has
come forward to subdue the frustration of industries. This theory considers the effect of
thickness in the form recognizing the contribution of transverse shear deformations (TSD)
along the thickness. The through-thickness variations are assumed constant, a deviation
from the reality as TSD vanishes at the top and bottom surfaces. However, this theory, to
some extent (say, for span-to-thickness ratios = 20 to 40) provides reasonable results in a
moderately thick situation. As the shell thickness further increases, due to the industries'
demands, the response of the later theory appears to be inaccurate, A new shell theory has
emerged very recently that considers the short comings of RMSDT, known as higher order
shear deformation theory (HOSDT). The development, faultiness, short comings, and
accuracy of this theory in the sense of through-thickness behavior are available, e.g., in Lo
et al. (I977a,b), Nelson and Lorch (1974), Levinson (1980), Murthy (1989), Reddy and
Li u (1985), Librescu et al. (1989), etc. All the aforementioned theories belong to the
equivalent single layer theory, and are very popular in determining the global response of
the structures. For the case of advanced ti.ber reinforced (e.g., graphite/epoxy, boron/epoxy,
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Kevlar/epoxy, graphite/PEEK, etc.) laminated plates and shells, due to the low transverse
shear rigidities, the HOSDT works very efficiently (Reddy and Robbins, 1994).

As the through-thickness theory is ameliorated for the shell structures, its cor­
responding analytical solutions (strong from) become more arduous, if not impossible. In
the domains of HOSDT, for the case of laminated shells or panels, analytical solutions to
the boundary value problems are limited to few boundary conditions, laminations, and
solution techniques. For example, pioneers Reddy and Liu (1985) have presented a
HOSDT-based analysis for shallow cross-ply doubly-curved panels of rectangular plan­
form, with the SS3 type (according to the classification of Hoff and Rehfield, 1965) simply
supported boundary conditions prescribed at all edges. They have used the Navier approach
in their analysis formulation. Recently, Librescu et at. (1989) have presented HOSDT­
based analytical solutions to shallow cross-ply laminated doubly-curved shells and cyl­
indrical panels with various boundary conditions using the Levy-type approach. This
approach has constrained them selecting boundary conditions of two opposite edges as of
SS3-type simply supported, while the other edges are combinations of remaining boundary
conditions (e.g., SSI, SS2, SS3, Cl, C2, C3, or C4).

To the best of the knowledge of the author, no analytical solutions other than the cross­
ply laminations, and aforementioned boundary conditions are reported in the literature for
cylindrical panels. It may be mentioned here that one may obtain solutions of any lami­
nation sequences and boundary conditions of cylindrical panels using approximate tech­
niques, such as finite element, Galerkin, etc. However, approximate solution techniques
(weak form or integral form) and exact solution techniques (differential or strong form)
are fundamentally different, as they seek solutions in different function spaces. A stronger
solution requires square integrable functions, and its first and second derivatives within the
domain boundary, a severe restriction in comparison to the weak form of solution where
the last two restrictions as of the stronger form are not obligatory. As a result, functions
or solution procedures that assuage the stronger conditions are not much conspicuous in
the literature. It is a norm in the realm of boundary-value problems that the solution
functions or the techniques that are suitable in one boundary-value problem may not be
true to the other. In laminated shell boundary value problems, a change in lamination
sequences, angles, and stacking patterns always bring forth a new frontier of challenge for
the researchers.

An extensive literature search has revealed that the analytical solution (strong form or
differential form) to the boundary value problem of a cylindrical panel with higher order
shell theory of rectangular planform with anti-symmetric laminations has not yet been
reported in the literature.

Therefore, the prime objective here is to develop an analytical solution to the boundary
value problem of a cylindrical panel of rectangular planform with anti-symmetric lami­
nations. For example, SS2-type simply supported boundary conditions at all edges is
considered. The second objective is to study, numerically, the convergence, and the spatial
variations of displacements, normal forces, and moments for various parametric effects.
The last objective is to compare the present results with an available finite element solution,
an approximate approach.

THEORETICAL FORMULATION

An orthogonal curvilinear coordinate system Xi (i = 1,2,3) is selected to represent the
geometry and deformation characteristics of a cylindrical panel of span a x b and radius r ll

as shown in Fig. I. The middle surface of the panel thickness is taken as the reference
surface, and the coordinate system is placed on it with X.J being normal. The total thickness
of the panel is assumed as h = l:;":c I t(i>, where tu >represents the thickness of the kth layer,
and IV denotes the total number of layers. The strain--displacement relations from the linear
(small deformation) theory of elasticity in a curvilinear coordinate system are given as
foIIows (Reddy and Liu. 1985):
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Fig. I. A laminated cylindrical panel. ut. A11. and AI! Nt and N!.
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(la-f)

where ui (i = 1,2,3) and Ci (i = 1, ... ,6) represent displacement vector and strain vector,
respectively, at any point on a parallel surface. 91 and g2 are the first fundamental quantities
of the shell reference surface. For the variationally higher order shell theory, ul (i = 1,2,)
are considered as of the form (Reddy and Liu, 1985):

- ( .x" ) J 4 [ I Ju = 1+- u +X cP -X'-- cP + --u,
I r I I 1 ,,1 " 3h 2 I g I .. I

(2a-~)

where Ui are displacements at the midsurface of the shell. The components CPI and CP2 are
rotations of normal about X2 and XI axes, respectively. Introduction of eqns (2) into eqns
(I) supplies the following strain-displacement relations (Reddy and Liu, 1985):
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(3a-e)

/{2 - __ --±-(m +U ). e~_) = U_,._, ;
1 - 3h 2 't' 1,1 3.11,

4
/{4

1 = - ...--.(m +U ,)3h 2 't'2 3,"

, 4
/{6" = ------(m?l+ mj,+2U 3j')3h 2 't' _. 't'._ " •

(4a--m)

The governing partial differential equations derived using the principle of virtual work
are

(5a-e)

where N" M" and Pi are stress resultants, stress couples, and second moment of stress
couples, respectively. q denotes a uniformly distributed transverse load. Qi represent trans­
verse shear stress resultants, and K i denote second moment of Q;.

The resultants of in-plane stress, stress couples, inertia of stress couples, and transverse
shear stress, respectively, are defined as

N,fi

A1,!!

P~fJ

QX3

K'3

~ f'U..>.

K-I fa. I

(5<2>
(5<2> X 3

(5<Z>(X3) dx3

(5<2>

(6)
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where N" = Nj, N II1! = N 2, etc. The constitutive relation of each laminate is considered to
be of the following form

(7)

(8)

where a'(t) and Em'/ are stress and elastic moduli tensors, respectively, for a lamina; and
e;~ represent the strain tensor of each lamina.

Finally, equilibrium eqns (5) can be expressed in the form of partial differential
equations for cylindrical panels in terms of displacements and its derivatives, as shown
below, in the most general form with constant coefficients:

aju/ +bjkuj,k + c;kIU"kI +djk'muj,k'm + e';kln",Uj,klmn = qi (i = 1, ... ,5) (9)

where aj, bjb ejkl' djk'm, and elkin", are constant coefficients, arising due to the lamination
sequences, as defined in Appendix I.

The above eqs (9) are highly coupled. The objective is to solve the above equations in
conjunction with the admissible boundary conditions. The constrains that are imposed at
the boundaries are of highly mixed type, in contrast to Dirichlet-, Neumann-, and Robin­
types (Andrews, 1986). In the Dirichlet, and Neumann types, the functions, and their
normal derivatives, respectively, are prescribed at the boundaries, while, in the Robin type,
the functions as well as their normal derivatives simultaneously are assumed vanished at
the boundaries. However, for the mixed type boundary conditions, functions, and their
normal and tangential derivatives are set equal to zero at the boundaries. These pose a
considerable amount of difficulties finding suitable solution functions and methodology in
the domain ofdifferential form ofsolutions. The following boundary conditions are selected.

(a) Dirichlet type:

(b) Mixed type:

U I = u, = ({J2 = 0 atxI =(O,a)

U2 = U3 = (PI = 0 atx2 =(O,b)

No = 0 at all edges

M I = PI = 0 atx I =(O,a)

M 2 = P2 = 0 atx2 =(O,h)

(lOa,b)

(1Ia,b)

The above boundary conditions are known as SS2-type simply supported according to Hoff
and Rehfield (1965).

Solution methodology
The solution functions for eqns (9) in conjunction with the prescribed boundary

conditions are assumed in the following form:
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J. f.

U2 (x I, X2) = L L A~,~,) cos(cxmx I) sin(fJ"x2 )
m=O 11= 1

1. -f_

U,(X I ,X2) = L L A;,~!sin(cx",xdsin(fJ"x2)
III ,,:::. I 11 =" 1

"j~ 1-

ipl(XI,X2) = L I A~,;,!cos(cx",xl)sin(fJ"x2)
fI/;;c·O 11'= I

/~

ip2(X 1,X2) = L I A~;,)sin(IX",xl)cos(fI"x2)
/'11= 111=0

(12a--e)

where A~,;;, are Fourier constants. IX", and fJ" are defined as nm/a and nn/b, respectively. The
assumed displacement functions [eqns (l2a~e)] completely satisfy the Dirichlet boundary
conditions at all edges. Therefore, obtaining first derivatives of the solution functions pose
no difficulties. However, the complication arises for further differentiations in satisfying the
mixed type boundary conditions due to the presence of ordinary discontinuities in the
derivatives, before their introduction into the partial differential equations. The dis­
placement function Ul is considered to explain the above phenomena.

( I_

'\' '\' iJI' _ ) . (/? .'Ul = L., L., A",,, sIn (cx",.\ I sIn J W \2)
mc:-] n=()

o~ X 2 ~ b (13)

U.u

I~ I

I I {cxmA;,~!cos(cxmxl)sin(fJ"x2)J 0 ~ XI ~ a; 0 ~ X2 ~ b
/11= I n::::: I

(14)

C/o /

U3Il L L {(CX",)2 A;,~,; sin(cx",xI) sin(fJ"x2)} 0 < XI < a; 0 ~ X 2 ~ b (IS)
111= 1/1;= I

Further differentiation ofeqn (15) is not possible with respect to XI due to the discontinuities.
In such an occasion eqn (15) is expanded in the following manner as suggested by Hobson
(1926), Green (1944), Whitney (1970), Whitney and Leissa (1969), Chaudhuri (1989), and
Kabir (1994):

I x

U'.IIJ ="7 L g,;(W sin{fJ"x2)
"-'1/=1

f :1

+ L I [-(cx",)'A:,~/;+w;,:)g;;/II)I+w;,~)g;;/21)JJCOS(IX",xI)sin(fI"X2) (16)
m= Ill"'" J

where OJ;,: I and w;,7) are defined as

{Will} = {(a, I)

OJ)2 1 (1,0)

if i is even}

if iis odd
(17)

m\\11 and g1N I are constants as defined in Appendix 3. This operation is applicable to all
the situations where ordinary discontinuous exists in the derivatives. Finally, all the required
derivatives can be introduced into eqns (9), as well as into the mixed boundary conditions
(8). Expressing uniformly distributed transverse load q~(I> = L;~".I L;~.I q~", sin(cx",xJ)
sin([J1I"2), algebraic equations may be expressed as
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j (

K;lIf1 + I L K~'m
i'i.= Ilfi= I

f. f.

h K ;'1/l + I L hK;,u:i
/1 :::::: 1 /Ii 1

(18)

where K;nn and C;HfI are constant coefficients arising from egns (9). hK;nn and hC;nfl are
constant coefficients arising from mixed type boundary conditions. .qr;';~r(2) are unknown
constant coefficients due to the application of the situations as shown in egn (16) for other
derivatives. The double summation in eqn (18) is due to the expansion of the series functions
as suggested by Kabir and Chaudhuri (1994, 1991).

A computer code AFSANA-ALTCP (A Fourier Series ANAlysis~Angle-ply Lami­
nated Thick Cylindrical Panel) is developed in SUN workstation using FORTRAN-77 to
solve the above mentioned equations.

NUMERICAL RESULTS AND DISCUSSIONS

The accuracy of a series solution is usually ascertained studying the convergence of
the assumed solution functions, their derivatives, and mixture of functions and their first
or second order derivatives (Robin-type). Spa tial variations of them, in the form ofcontour
plots, are always of interest, to study their behavior pointwise in the domain. The numerical
results are presented for the following material properties characterizing each orthotropic
lamina:

where £1 and £2 are Young moduli along major and minor axes, respectively, of the lamina.
GI2 is an in-plane shear modulus, while G13 and G]3 are transverse shear moduli in Xl'Xl

and X2-Xl planes, respectively. vii denote Poisson's ratios. A laminated cylindrical panel is
generally marked using the order of the placement of lamina. For example, 01102 (45'1-45
laminations in the present case) laminated panel refers to two layers of laminae having
major material directions of top and bottom layers at an angle 01 (45) and O2 (-45'),
respectively, measured from projecting xI-axis on to the shell surface, with rotation about
x,-axis using right hand rule. For the sake of convenience of presentation the following
dimensionless quantities are defined.

10' M;
Mt= U=1.2);

qa2
N* = ~93N; U = 1,2)

, qa (20)

The normalized centrally measured transverse displacement ll~, moments Mf, and M! are
plotted in Fig. 2, with respect to various values of m = n, for a cylindrical panel having
radius-to-span ratio of 5, aspect ratio (bla = I) of I, and span-to-thickness ratio of 10. A
monotonic convergence has been observed in all the above cases. For the same cylindrical
panel convergences of normalized centrally measured Nf, and N! are shown in Fig. 3, with
minor oscillations observed at low m = n.

Figure 4 presents convergences of normalized centrally measured transverse displacement
ll~, and moments Mf and M! for a cylindrical panel with radius-to-span ratio of 5. aspect
ratio of bia = I, and span-to-thickness ratio of 50, a relatively thin shell situation. The
transverse displacement ll~ as expected converges very smoothly, while the moments (Mf,
and Mn show high oscillations at low m = n, and become smoother with the increase of
m = n. For this cylindrical panel normalized centrally measured Nf, and N! show a
convincing convergence as plotted in Fig. 5. Similar plots for a relatively moderately-deep
cylindrical panel are presented in Figs 6-9. showing convincing results.
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Fig. 2. Convergence of central values of uf, Mf, and M! for a cylindrical panel with (I'll/a) = 5,

(h/a) = I, and (aih) = 10.
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Fig. 3 Convergence of central values of Nf and N! for a cylindrical panel with (I'll/a) = 5, (hia) = I,

and (a/h) = 10.
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Fig. 4. Convergence of central values of ut, Mr, and M! for a cylindrical panel with (I'll/a) = 5,

(hla) = I, and (a/h) = 50.
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Fig. 5. Convergence of central values of Nf and Nf for a cylindrical panel with (1'" fa) = 5. (hia) = I.
and (aiM = 10.
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Fig. 6. Convergence of central values of ut. Mf. and lYlf for a cylindrical panel with (r,,/a) = 10.
(h;a) = I. and (a/h) = 20.
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(h/a) = I. and (a/h) = 20.



bla = I ,. rlIla = 10, aIh = 50

3726

20

18

16

14

12

10

8

6

4

H. R H. Kabir

-----~.-' - -- _. _. -. - -- '.-'-
M1

o +------~--+
1 3 5 7 9 11

m =n
Fig. 8. Convergence of central values of ut. Mf. and M! for a cylindrical panel with (rl i/a) = 10,

(h/a) = I. and (a/h) = 50.
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Fig. 9. Convergence of central values of Nf and N! for a cylindrical panel with (1'IIia) = I(),

(h/a) = 1, and (a/h) = 50.

Variations of uf. Mf, and M~ in Fig. 10, and Nf. and N~ in Fig. II with respect to
various a/h for a cylindrical panel having b/a = I, filia = 5, and m = n = 9 are presented.
The membrane effect dominates over the flexure as alh increases. Similar trend is not found
for the case of same panel with fllia = 50, a moderately deep situation. The moments
remain constant for a/h ;:, 20 (Fig. 12), while the membrane effect dominates with the rise
of a/h. Figures 13-17 plot the effects for various alh of the same panel with b/a = 5. In case
of moderately shallow panel, moment increases with the increase of a/h. then starts decreas­
ing with a/h ;:, IS.

Variations of ut, Mf, and M~ with respect to various filia are presented in Fig. 18.
Variations of them are not distinctive for fll!a ;:, 50. Variations of Nf. and N! with respect
to various rll/a for the previous panel are given in Fig. 19. The stress resultants, Nf. and
N~ sharply abate with the increase of r,da.

Spatial variations of Nf, N~, Mf. and M! are given in a most panoramic way in the
form of contour plots in Figs 20-23, respectively. for bla = 1, alh = 5, and fil/a = 5.
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Fig. 10. Variations of central values of ut, Mf, and M~ with respect to alll for a cylindrical panel

with (r"/a) = 5 and (b/a) = I, and m = 11 = 9.
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Fig. II. Variations of central values of Nf and Nt with respect to alll for a cylindrical panel with
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Fig. 12. Variations of central values of IIf, Mr, and M~ with respect to alll for a cylindrical panel

with (rll/a) = 50 and (bla) = I and m = 11 = 9.
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Fig. 13. Variations of central values of Nt and Nf with respect to a/h for a cylindrical panel with

(fllia) = 50 and (b/a) = I. and m = n = 9.
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Fig. 14. Variations of central values of uj, Mr, and Mf with respect to aih for a cylindrical panel

with (fll/a) = 5 and (bia) = 5. and m = n = 9.

6000 .......... - .

5000

4000

3000

2000

1000
b/a = 5; rll/a = 5 ,. m = n = 9

5040

o +1-----+--------+1-------tl.-----+----.--J
5 10 20 30

aIh
Fig. 15. Variations of central values of Nt and Nf with respect to a/h for a cylindrical panel with

(fil/a) = 5 and (bla) = 5, and m = n = 9.
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Fig. 16. Variations of central values of ur, .1141, and Mr with respect to a/h for a cylindrical panel

with (r'l/a) = 50 and (h/a) = 5, and m = n = 9.
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Fig. 17. Variations of central values of Nt and Nr with respect to a/h for a cylindrical panel with

(r,,/a) = 5 and (b/a) = 5, and m = n = 9.
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Fig. 18. Variations of central values of ur, Mr, and Mr with respect to (rll/a) for a cylindrical panel

with (a/h) = 10 and (h/a) = I, and m= n = 9.



3730 H. R. H. Kabir

1600 -r.:-------

1200

bla = 1 ,. a1h = 10,. m = n = 9

800

400 -

i

oL-----.+~--____+_-.-~~~
5 10 20

rll/a
50 100 500

Fig. 19. Variations of central values of N1 and N~ with respect to (1'II/a) for a cylindrical panel with
(alh) = 10 and (bia) = I. and m = II = 9.
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Fig. 20. Contour plotting for spatial variations of N1 for a cylindrical panel with (I"l/a) = 5.
(a/h) = 5. and (hla) = I.

The numerical results obtained from the present analysis are compared with the first
order shear deformation theory-based finite element formulation, and analytical solution.
A four-node quadrilateral finite element according to the work of Bathe and Dvorkin
(1984), is considered for the former formulation while a double Fourier series solution is
adopted for the later one. This four-node quadrilateral element is implemented in NISA
(1992), a commercially available generalized finite element package. A cylindrical panel
with (rll/a) = 10, and (h/a) = 1 is considered for a/h = 10. The panel modeled with 16 x 16
finite elements has shown convergency, and details of which are not reported in this paper
for the sake of brevity. The variations of uf and M~ measured at \'2 = (h/2) along xI/a are
plotted in Figs 24-26, respectively. In all the cases, RMSDT-based solutions over predict
the results in comparison to the present study.
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Fig. 21. Contour plotting for spatial variations of N! for a cylindrical panel with (r,,/a) = 5.
(a/h) = 5, and (b/a) = I.
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Fig. 22. Contour plotting for spatial variations of Mf for a cylindrical panel with (I'll/a) = 5.
(a/h) = 5. and (bia) = 1.

CONCLUSIONS

An analytical solution to a boundary-value problem of a thick moderately-deep cyl­
indrical panel with anti-symmetric angle-ply laminations is presented. A boundary con­
tinuous solution approach based on double Fourier series solution functions is considered.
The numerical results thus presented herein should serve as base line solutions for a future
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Fig. 23. Contour plotting for spatial variations of M! for a cylindrical panel with (1'II i a) = 5,
(alh) = 5, and (bla) = l.
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comparison. The extension of this work to free vibration and buckling problems is under
progress.
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APPENDIX 1

For the sake of brevity terms related to eqn (23) for i = I are presented:

h.l , = ---'llooAllll; C:11:::: k/~()2Al111: C)l~ = 2(J()A 1112 ~ dl2 = 2()()A '1n

('ill = 00A 1211 ; ('~12 = ()()AI112+()()AI1211; ::::;: 00A I222

(111 =OOA I211 : til2 =OOAI212+ooAI1211: ('~22 =00A 1222

c~ I I = 0 I A 1111 +k,; 02 A \111: c~ 12 := 2() I A 1112 + 2k,~ 02 A 1112

C~22 =kl~02Al122+01A]122; ('~Jl = OIAI112+k/~()2Al112

C~12 = OJ A 1122 + 01 A 1112 +k/, 0] A 1112 + kj~ 02 A 1122

C.~22 = 01 A 1212 +k}I01Allll

APPENDIX 2

Definitions of stiffnesses as shown in Appendix I :
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()O A'I{iJI

02 A 1./1;.'11
(2.1)

N

L E;Z;J(ta)-t<k_1 )
~'" 1

APPENDIX 3

Definitions of unknown constants arising in eqn (29) :

(2.2)

g,;i,"l __ -"/... (h (uUI(a,x')+u.II(O,X')j sin(f:i"x')dx'
a) Jo


